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Figure 1: Left: Scene rendered with around 40FPS at 1500×1200 screen resolution. The resolution of the height map is 10242. The height
field is rendered twice since water is reflecting the environment. Right: A screenshot from the Venus scene showing a highly complex height

map applied on a planar surface, height map resolution is 40962 rendered with 25 FPS at 1200x900 screen resolution.

Abstract

This paper presents a GPU-based, fast, and accurate dynamic height
field rendering technique that scales well to large scale height fields.
Current real-time rendering algorithms for dynamic height fields
employ approximate ray-height field intersection methods, whereas
accurate algorithms require pre-computation in the order of seconds
to minutes and are thus not suitable for dynamic height field ren-
dering. We alleviate this problem by using maximum mipmaps,
a hierarchical data structure supporting accurate and efficient ren-
dering while simultaneously lowering the pre-computation costs to
negligible levels. Furthermore, maximum mipmaps allow for view-
dependent level-of-detail rendering. In combination with hierarchi-
cal ray-stepping this results in an efficient intersection algorithm for
large scale height fields.
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1 Introduction

Efficient ray-height field intersections are an important tool in a
range of computer graphics applications. A number of applications

such as terrain rendering, depth-assisted light field rendering and
collision detection are relying upon fast and accurate intersection
tests. Furthermore, different advanced texture mapping techniques
like displacement mapping [Cook 1984], relief mapping [Policarpo
et al. 2005; Policarpo and Oliveira 2006] and shell mapping [Po-
rumbescu et al. 2005; Jeschke et al. 2007] use an underlying ray-
height field intersection algorithm. Finally, GPU ray-casting ap-
proaches e.g. for reflection/refraction rendering like [Wyman 2005;
Szirmay-Kalos et al. 2005; Hu and Qin 2007] use ray-depth map
intersections to compute refracted or reflected rays. Addition-
ally, these algorithms can benefit from depth-enhanced environment
look-ups [Szirmay-Kalos et al. 2005].

Current state-of-the-art methods employ broadly two classes of
algorithms. The first class are fast, approximate methods, e.g. uni-
form stepping combined with binary search. These methods are
not guaranteed to find the correct intersection and lead to artifacts
in the rendering process. The second class are accurate algorithms
that rely on pre-computed information to facilitate fast traversal and
accurate intersection computation. This comes at the cost of pre-
computation time (seconds to minutes) and storage requirements in
graphics memory.

The method proposed in this paper takes an in-between ap-
proach. We use a pre-computed, hierarchical data structure, the
maximum mipmap, to facilitate efficient intersection operations.
On the other hand, this data structure is also efficient to pre-
compute, enabling real-time update rates. The pre-computation is
simple and fast since only a customized mipmap shader is neces-
sary. In summary, our algorithm is usable in a wide range of graph-
ics algorithms, enabling accurate height field intersections for large
scale dynamic height fields with the overhead of storing a mipmap.

The paper is organized as follows. In Sect. 2 we review related
work and applications of height field rendering. In Sect. 3 we in-
troduce our height field intersection algorithm, which we compare
against existing methods in Sect. 4. In Sect. 5 we show results for
a prototypical application before we conclude the paper in Sect. 6.



Figure 2: Height field samples are defined at the corners of a regular grid (left), four corner points define a bilinear patch of the height field
(middle), the highest resolution mipmap contains the maximumvalue of the bilinear patch (right).

2 Related Work

Ray-height field intersection is a pervasive tool in graphics algo-
rithms. The classical application of direct height field rendering
is terrain rendering. Terrain rendering is usually performed us-
ing level-of-detail techniques that analyze the height field data in
an online or offline step and compute an optimized triangulation
which is then ray-traced or rendered by rasterization-based ap-
proaches, e.g. [Lindstrom et al. 1996; Roettger et al. 1998; Hoppe
1998]. Direct ray tracing of height fields is often based on 2D
rasterization [Musgrave 1988; Cohen and Shaked 1993; Cohen-Or
et al. 1996; Qu et al. 2003; Henning and Stephenson 2004]. The
ray’s projection into the texture domain is rasterized and the cells
corresponding to height map pixels are checked for intersections.
These algorithms use different acceleration methods. Cohen and
Shaked [1993] use a pyramidal data stucture to perform hierarchi-
cal ray tracing. Cohen-Or et al. [1996] use an incremental uni-
form traversal where each pixel column of an image is traced incre-
mentally. Whereas the previous methods use a constant height ap-
proximation inside a height field cell, Qu et al. [2003] use different
primitives, i.e. planes or polygonal approximations, yielding higher
quality renderings for low resolution height fields. Henning and
Stephenson [2004] use the run-length’s of the discretized lines to
intersect larger bounding volumes with the height field data. Smits
et al. [2000] directly intersect displacement mapped triangles using
barycentric coordinate hierarchies instead of regular sampling on a
two-dimensional grid.

In GPU-based real-time rendering algorithms these ray-tracing
methods have not become popular. Instead, approximate methods
like uniform stepping combined with binary search are dominantly
being used [Oliveira and Policarpo 2005; Policarpo and Oliveira
2006]. Alternatively, Newton iterations [Ohbuchi 2003; Wyman
2005; Hu and Qin 2007] or the secant method [Risser et al. 2005;
Szirmay-Kalos et al. 2005] are performed either by themselves or
combined with uniform search. The former approach is usually
being taken when accuracy is not too much of an issue, like in re-
fraction rendering or nearby geometry lookup after refraction or
reflection, or when the height map is simple.

In case correct intersections are required, intersection methods
based on safety zones are being used, e.g. [Donnelly 2005; Baboud
and Decoret 2006; Jeschke et al. 2007]. All safety zone tech-
niques known today require off-line pre-computation of the ac-
celeration structure. Donnelly [2005] uses distance maps which
require a 3D texture and significant pre-computation times. The
memory requirements prohibit the use of this method to render
large scale height fields. Lately, methods have been devised that
store the safety region information in a 2D texture. Kolb and
Rezk-Salama [2005] use multi-channel dilation and erosion maps
to define safety regions for empty space skipping. Baboud and
Decoret [2006] compute the minimum radius around each height
field cell where any ray intersects the surface only once. In stop-
ping the ray traversal this way, one point above and one point below
the surface have been found and a binary search is performed to re-

fine the result. Dummer [2006] uses cone ratios to define empty
space regions. Policarpo and Oliveira [2007] improve this method
by allowing exactly one ray-height field intersection for any ray in-
side the cone. Again, a binary search follows the ray traversal to
refine the result.

In contrast to recent GPU-based ray-height field intersection
methods we propose to borrow from the earlier CPU-based accurate
ray tracing methods to perform scalable and efficient height field in-
tersections. The maximum mipmap is a data structure equivalent to
a fully sub-divided quad-tree [Samet 1990] and thus allows for hier-
archical traversal of the height map which in practice results in near
logarithmic traversal complexity. Minimum-Maximum Mipmaps
have been used lately for soft shadow rendering [Guennebaud et al.
2006] and geometry image intersection [Carr et al. 2006]. Guen-
nebaud et al. [2006] use a hierarchical mipmap structure to effi-
ciently determine the occluded region between a point and an area
light source. Carr et al. [2006] use minimum-maximum mipmaps
to define a hierarchy of axis-aligned bounding boxes for deform-
ing triangle meshes. Once the lowest mipmap level is reached they
perform ray-triangle intersections.

Our algorithm is mainly inspired by the work of Cohen and
Shaked [1993], who use discrete line traversal of a quad-tree to
render height fields on a parallel computer, whereas we employ
current graphics hardware and a parametric line description. We
also use parametric surface patches for the description of a height
field within one voxel, whereas [Cohen and Shaked 1993] assume
a piecewise constant height field.

A similar approach as taken in this paper is presented by Oh et
al. [2006]. However, their work has several shortcomings which
we improve upon. The major improvements are a truly hierar-
chical traversal of the maximum mipmap data structure, a view-
dependent, adaptive, per-pixel level-of-detail selection and an ac-
curate bilinear patch intersection at the lowest level of the mipmap.

3 Algorithm

Our ray-height-field intersection algorithm is based on an accel-
eration data structure, the maximum mipmap. This data structure
is fast to pre-compute and allows for efficient empty space skip-
ping. In using a mipmap-like data structure for empty-space skip-
ping we balance the complexity of pre-computing the acceleration
data structure with that of the ray traversal phase.

The maximum mipmap represents an implicit bounding volume
hierarchy (BVH) of successively larger cuboids. It is similar to
a fully subdivided quad-tree [Samet 1990] storing the maximum
heights above the base plane of the height field. Instead of storing
parent-child relations as pointers we compute the information on-
the-fly.

During the ray traversal phase we move the ray position from
cell boundary to cell boundary until the ray falls below the height
field surface. While moving through the height field hierarchy, we
dynamically change the hierarchy level. In case the closest intersec-
tion in the forward direction of the ray falls below the height field



Figure 3: During the pre-computation step the maximum value of each cell of the height field is computed. The mipmap data structure is
build up by computing the maximum value of the four underlying samples. At the finest level, i.e. level 0, the heights of the four corners of a
bilinear patch are stored in one RGBA value.

data the hierarchy level is decreased by one and the intersection
computation is repeated until a cell can be passed or the intersec-
tion point with the height field surface has been found on the lowest
level of the hierarchy. A more detailed description of the intersec-
tion algorithm is presented in Sect. 3.2.

The intersection computations, i.e. ray-plane intersections for
the bounding volumes and ray-bilinear patch (bipatch) intersections
for the finest resolution level of the height map, are performed al-
gebraically. A substitution of the analytical ray bilinear patch in-
tersection in the finest mipmap level with an iterative search of the
intersection point (i.e. uniform stepping with consecutive binary
search) results in increased performance. A comparison between
analytical and iterative bilinear patch intersection is presented in
Sect. 3.4.

In the following we will detail the structure of maximum
mipmaps, explain the intersection algorithm in detail and show
how to implement level-of-detail rendering using the proposed data
structure. Finally, we propose a different data layout to improve the
memory access pattern. This results in increased performance due
to better cache utilization on current graphics hardware.

3.1 Data Structure

We define the height field as a collection of bilinear patches with
data points given at the corner points of a regular grid, see Fig. 2.
For convenient access using only one texture fetch, we store the
four height values of a bilinear patch in a RGBA texture. For each
of the patches we compute the maximum value of the four cor-
ner points and store it in the highest resolution mipmap. After-
wards, the mipmap generation process is run. For each coarser level
of the mipmap, the maximum height value of the four underlying
mipmap pixels is computed. The resulting patch hierarchy is shown
in Fig. 3. The mipmap hierarchy can be computed dynamically on
the GPU. The following timings have been produced with a Dual
Core Opteron 2.6 GHz, equiped with a Geforce 8800 Ultra. As a
comparison the timings for the pre-computation of a relaxed cone
step map [Policarpo and Oliveira 2007] and a distance map [Don-
nelly 2005] are provided. All timings use the height field shown in
Fig. 6.

maximum relaxed distance
mipmap CSM maps

2562 0.17ms ∼ 2 min ∼ 10 sec

5122 0.27ms ∼ 15 min ∼ 1:20 min

10242 1.20ms ≥ 8 hours ≥ 12 min

20482 2.13ms n.a. n.a.

40962 7.52ms n.a. n.a.

Table 1: Time needed to pre-compute the acceleration data struc-
tures of maximummipmaps, relaxed cone step mapping (CSM) and
distance maps. The z resolution of the 3D distance map is chosen
to be one fourth of the x resolution (e.g. 256x256x64).

The table shows that the computation of the acceleration data
structure for our maximum mipmaps algorithm is negligibly fast
while other state-of-the-art algorithms require considerable pre-
computation times. The maximum mipmap can be computed on-
the-fly providing support for dynamic height fields.

3.2 Intersection Algorithm

The intersection algorithm starts by rendering the bounding geom-
etry of the height map. For each pixel covered by the bounding
geometry we cast a ray into the scene, starting at the bounding vol-
ume of the height field.

traverse_ray:

while( ray_above_height_field )

height = sample_maximum_height

( pos, dir, level );

if ( level == 0 && ray_height <= height )

intersect_ray_bilinear_patch

( pos, dir );

else

intersect_bounding_planes

( pos, dir, level );

end

if( ray_height > height || level == 0 )

move_to_intersection_point;

update_mipmap_level;

else

descend_one_mipmap_level;

end

end

Algorithm 1: Ray-height field intersection

We start the intersection computation at the highest mipmap
level. The main loop of our algorithm then consists of intersect-
ing the bounding planes defined by the mipmap pixel at the current
mipmap level. We intersect the four planes bounding the volume on
the sides and the plane of maximum elevation. The plane equations
are computed on-the-fly from the mipmap sample position. Since
we are mainly moving from cell boundary to cell boundary, care
has to be taken when determing the sampling position.
An important feature of our algorithm is the sampling of the

height map at integer positions in the direction of the viewing ray.
This measure results in accurately intersected bounding planes even
at the corners of a height map pixel. In comparison, Oh et al. [2006]
use a small offset vector and sample at non-integer positions which
could result in missed intersections.
Note that we intersect the plane of maximum elevation as well

as the bounding planes of a pixel. This measure lets us determine



Figure 4: Two cases where traversing the hierarchical data struc-
ture without ascending steps results in significant performance loss.
(left) A height field is observed at a grazing angle. Our algorithm
renders the scene at 24 fps, while the algorithm of Oh et al. [2006]
achieves only 9 fps. The screen resolution is 800×600, the height

field resolution is 40962. (right) With increasing depth of the dis-
placement rendering becomes significantly slower using the algo-
rithm of Oh et al. (27fps). Our algorithm renders this scene at
80 fps. The screen resolution is 800× 600, height field resolution

is 10242.

whether we can move the ray position forward independent of the
intersection result. We can move the ray to the computed intersec-
tion point if its current height is above the maximum height of the
underlying mipmap cell because the closest intersection point will
be at the boundary or at the plane of maximum elevation.

In case the ray position cannot be updated because the current
mipmap cell is potentially blocking it, we refine the search by de-
scending one level into the hierarchy.

At the lowest level, i.e. at the bilinear patch level, the maxi-
mum height is determined from the four corner points of the bilin-
ear patch. There are two cases with highly different computational
costs to consider. In comparison to an intersection with the bound-
ing planes of a mipmap pixel, a bilinear patch intersection is ex-
pensive to compute. Therefore, we only perform the bilinear patch
intersection if a potential intersection exists.

After moving the ray position, we perform an update of the cur-
rent mipmap level. The necessity for this update arises when a ray
passes very close to the height field surface but does not intersect
it. The algorithm potentially descends to the bilinear patch level
of the mipmap hierarchy to determine that an intersection does not
take place. Without ascending again, the algorithm would be forced
to take very small steps for potentially a large number of iterations
until the ray finally hits the surface or leaves the bounding volume
of the height field.

There are different strategies to perform the update of the hier-
archy level. Depending on the cell boundary at the current ray po-
sition, the algorithm can jump into different levels of the bounding
volume hierarchy represented by the maximum mipmap. However,
the online computation of this information requires a loop with a
dynamic stopping condition. Current graphics hardware is not well
suited to this kind of computation. Alternatively, the information
can be stored in an additional texture. However, accessing this tex-
ture results in performance loss similar to the dynamic loop. We
found that the most performant update strategy is to simply increase
the mipmap level by one in case the ray resides at a cell boundary
divisible by two. The disadvantage of ascending only one hierarchy
level is compensated by faster computation and simpler algorithmic
structure.

In comparison to our method Oh et al. [2006] do not ascend in
the hierarchical data structure, therefore not taking complete ad-
vantage of the empty space skipping capabilities of the maximum
mipmap. Thus, in case no intersection is found their algorithm is
forced to take very small steps once the lowest hierarchy level is
reached, effectively resulting in a linear search. This has consider-
able performance drawbacks at grazing angles and when rendering
displacement maps with high depth complexity, see Fig. 4.

Figure 5: During the ray propagation phase a mipmap hierarchy
structure is used to perform empty space skipping. The figure
shows a path through the mipmap data structure for a given height
field. The curve at the bottom represents a one-dimensional height
field consisting of linear elements at the lowest level. The tree on
the top symbolizes the maximum mipmap. Each cell contains the
maximum value of the height field within that cell. The black line
shows the order of traversal chosen by our algorithm.

In Fig. 5 we show a one-dimensional example of ray-height field
intersection using the proposed algorithm. The figure shows a fully
subdivided quad-tree containing the maximum height field values
for its nodes’ bounding volumes. At the bottom, a one-dimensional
height field consisting of linear elements and a ray are depicted.
The thick black line shows the traversal order chosen by our algo-
rithm. The first six steps require the algorithm to descend to level 1
of the bounding volume hierarchy to pass the “hill” in cell 4 and 5.
Afterwards, successively larger steps can be taken until a parent of
cell 12 containing the correct intersection is found. The algorithm
then again descends into the hierarchy, computing the correct inter-
section point.

In comparison to other ray-height map intersection algorithms,
e.g. uniform stepping with binary search [Oliveira and Policarpo
2005; Policarpo and Oliveira 2006], our algorithm requires less iter-
ation steps until a correct intersection point is found. The number of
steps is comparable to other pre-computation based techniques like
relaxed cone step mapping [Policarpo and Oliveira 2007]. Unfortu-
nately, the performed steps are more complex, since a hierarchical
data structure is being used. Fig. 8 shows the number of iteration
steps required to find the correct intersection point of the ray and
the height field. A performance comparison of different algorithms
is given in Sect. 4.

3.3 Level of Detail

The main advantage of using maximum mipmaps as acceleration
data structure is the possibility of getting level of detail rendering
capabilities almost for free. Based on the distance between the cam-
era and the intersection point the maximum level of the mipmap
that still projects to less than one pixel on screen can adaptively be
determined and subtrees of the bounding volume hierarchy can be
pruned. Hence to support height map mipmapping we change al-
gorithm 1 slightly to yield algorithm 2. The potential slow down of
using additional variables and instructions is low in comparison to
the speed up we achieve by stopping the ray propagation earlier.

The formulation of our switch_lod function is modeled after the
following observation. Since the area of space covered by one pixel
changes linearly with respect to the depth of the ray position in
eye space, it can be used to define a simple Level-of-Detail func-
tion. Before running the height field intersection shader, we deter-
mine the distance at which one height field pixel on the base plane
projects to one pixel on the screen. This value is stored in the dis-



Figure 6: Test scene used for the comparison of the performance of different algorithms. Note how detail increases with higher resolution.

Height map resolution from left to right: 10242, 20482 and 40962. For the resolutions 2562 and 5122 the height map 10242 was scaled down.

traverse_ray:

while( ray_above_height_field )

height = sample_maximum_height

( pos, dir, level );

if( switch_lod( pos, height, lod ) ) lod++;

if ( level == 0 && ray_height <= height )

intersect_ray_bipatch

( pos, dir );

else

intersect_boundary_planes

( pos, dir, level );

end

if( ray_height > height || level == lod )

move_to_intersection_point;

update_mipmap_level;

else

descend_one_mipmap_level;

end

level = max( level, lod );

end

Algorithm 2: Ray-height field intersection with Level of Detail

tance_factor variable. At double the distance, a patch of four time
the area will project to one pixel. However, since the height field
defines elevation values, a cell could still contain a large spike and
project to multiple pixels on the screen, resulting in visible artifacts.
To prevent these, we subtract the maximum value of the current
height field cell from the ray’s z-coordinate and clamp the result to
zero.

max((ray_depth−height)−2lod ∗distance_ f actor,0) > 0.

Using this conservative heuristic results in artifact-free render-
ing in most of the cases. Additionally, as suggested by [Tatarchuk
2006], we could switch to simple bump mapping [Blinn 1978] once
the distance to the displacement mapped surface becomes large.
However, we do not currently implement this.

3.4 Performance Improvements

In comparison to other algorithms the algorithm presented in this
paper cannot take advantage of hardware interpolation. Hence to

compute the correct intersection point of a ray with a height field
cell on the lowest hierarchy level an intersection with a bilinear
patch has to be computed. Ramsey et al. [2004] show an analytical
solution of the ray-bilinear patch intersection problem, which we
implement. Unfortunately the computation costs of such an inter-
section on the GPU are high due to the strong branching structure
of the algorithm and the performance decreases considerably.
An alternative solution is to use uniform stepping combined with

binary search [Policarpo et al. 2005] to intersect the ray with the bi-
linear patch within the height field cell. The number of iteration
steps can be very small due to the small region, i.e. one texel of
the mipmap at level 0, where the intersection point has to be found.
Such an iterative approach is GPU cache friendly, since the accord-
ing texel resides in the cache. Alternative approaches like Newton
iterations are not directly applicable because an intersection of the
ray with the height field surface is not guaranteed, potentially re-
sulting in divergent behavior of the Newton method.
Oh et al. [2006] propose another method for finding the final

intersection of the ray with a bilinearly interpolated heightmap cell.
They perform a linear approximation of the quadratic height field
profile along the viewing ray. This results in artifacts where the
bilinearly interpolated height field does not behave approximately
linear. Furthermore, they do not check against the boundaries of
the bilinear height field patch, potentially generating intersections
outside the support of the patch. A visual example of the artifacts
introduced by their algorithm is shown in Fig. 7.
Table 3 shows frame rates achieved by using the maximum

mipmap algorithm without bilinear patch intersection, using the an-
alytical approach and when performing an iterative search to deter-
mine the ray-bilinear patch intersection.

maximum + bilinear patch + linear
mipmap intersection binary search

2562 95 43 70

5122 87 38 58

10242 75 33 50

20482 70 27 40

40962 49 22 35

Table 3: Performance (in frames per second) of the maximum
mipmap algorithm. The first column shows timings without bi-
linear patch intersection. The second and the third column show
results using analytical ray-bilinear patch intersection and uniform
combined with binary search, respectively. The rendering is per-
formed at a screen resolution of 1024× 768 pixels. The iterative
search uses 10 linear and 6 binary search steps.

Additional speed-ups can be achieved by re-arranging the
mipmap information in graphics memory. Due to the hierarchical
structure of our algorithm the memory access pattern is incoher-



Figure 7: A height field with several saddles rendered using our
bilinear patch intersection (left) and using the method proposed by
Oh et al. [2006] (right).

uniform + relaxed maximum MM
binary CSM mipmap + LOD

640x480 120 390 154 189

800x600 86 310 110 140

1024x768 56 227 75 90

1200x900 43 182 57 69

Table 4: Performance (in frames per second) of different algorithms

for different screen resolutions, height map resolution is 10242. The
number of linear search steps for the first algorithm is empirically
chosen to yield the same rendering quality as the maximummipmap
algorithm and to assure temporal coherence. Test scene is shown in
Fig. 6

ent, thus resulting in cache misses. Although graphics hardware
is highly optimized for mipmap accesses the frequent switches be-
tween hierarchy levels in our algorithm seem not to be well sup-
ported by todays GPUs.

Our experiments show that cache misses can be significantly re-
duced by storing the mipmap information in continuous texture lo-
cations. This can be done by storing the mipmap data into a 3D
texture. The depth slices then contain all mipmap levels at a partic-
ular 2D texture location. We observed speed-ups of 15−20% when
using this memory layout. However, the memory requirements are
considerable. Please note, that the timings provided in the next sec-
tion do not include this optimization.

4 Comparison

We compare our maximum mipmap algorithm against representa-
tive algorithms from the two classes of height field intersection al-
gorithms, approximate methods for dynamic height fields and algo-
rithms based on pre-computed acceleration data structures for static
height fields. The observations equally apply to the method of Oh et
al. [2006] in most of the cases, the drawbacks of which have already
been discussed in the previous sections.

As a representative of the class of approximate intersection
methods, requiring no pre-computation, we choose linear step-
ping combined with binary search [Policarpo and Oliveira 2006].
The alternatives such as Newton iterations [Ohbuchi 2003; Wyman
2005; Hu and Qin 2007] or the secant method [Risser et al. 2005;
Szirmay-Kalos et al. 2005] are only suitable for simple height
maps when employed by themselves. In combination with uniform
search the uniform part of the resulting algorithm dominates the
computation costs by far, justifying our restriction to only one al-
gorithm.

The class of accurate intersection algorithms requiring pre-
computation is represented by the relaxed CSM algorithm [Poli-
carpo and Oliveira 2007]. Our choice is motivated by the ability of
the CSM algorithm to store the acceleration data structure in a 2D
texture. Distance maps are excluded because of too high memory
requirements.

The results of two performance tests are shown in tables 4 and 5.

uniform + relaxed maximum maximum
binary CSM mipmap mipmap + LOD

2562 150 240 95 110

5122 103 233 87 102

10242 56 227 75 90

20482 32 n.a. 70 89

40962 9 n.a. 49 77

Table 5: Performance of different algorithms for different height
map resolutions, screen resolution is 1024 × 768. Maximum
mipmaps scale well with increasing height field resolution, whereas
the combination of uniform and binary search becomes inefficient
for large maps. CSM timings for height map resolutions larger

than 10242 cannot be provided due to impractically large pre-
computation times. Test scene is shown in Fig. 6

The first test, table 4, shows the dependence of the rendering perfor-
mance on the screen resolution. In the second test we investigate the
impact of the height field resolution on the rendering performance.

The first test, table 4, shows a near linear dependency of all al-
gorithms on the screen resolution. This is expected since all al-
gorithms are ray casting variants, their run-time depending on the
number of affected pixels.

In the second test, table 5, we show that the maximum mipmap
algorithm outperforms algorithms based on uniform search for

height maps larger than 5122. This number can vary, depending on
the height field structure. In the accompanying video we show ad-
ditional examples. Usually the trade-off point between the two al-

gorithms is somewhere between the resolutions of 5122 and 10242.
The CSM algorithm generally performs faster than both uniform
search and maximum mipmaps. However, because of the large pre-
computation times it is only suitable for use with static height maps.

In a third test, we show the accuracy of the three algorithms in
our test. Fig. 9 shows that maximum mipmaps produce artifact-free
renderings while algorithms based on uniform search show consid-
erable artifacts at the same rendering frame rate for a height map

of 10242. This behavior is getting worse with increased height map
resolution. Relaxed cone step mapping on the other hand should
be nearly artifact-free, however, our results, using the implemen-
tation of Policarpo and Oliveira [2007], also show problems with
very narrow height field structures. Please note that the spiky ap-
pearance of the height map is due to grayscale anti-aliasing in the
image processing tool that was used for the generation of our height
maps.

An additional advantage of the maximum mipmap algorithm is
that artifact-free renderings can be produced without parameter ad-
justments. Algorithms using uniform stepping require proper ad-
justments on the number of iteration steps for every height map to
achieve artifact-free results. Furthermore, the maximum mipmap
algorithm exhibits more stable rendering frame rates when differ-
ent parts of the height map are rendered or different gazing angles
are being used.

5 Results

We have implemented the technique described in this paper as a
Shader Model 4.0 fragment program. The timings and the accom-
panying video were produced using a Dual Core Opteron 2.6 GHz,
equiped with a Geforce 8800 Ultra. For the results shown in the
video we have implemented tangent space relief mapping [Poli-
carpo et al. 2005] as an example application. In the video we first
show a comparison between the proposed algorithm and uniform
combined with binary search as well as relaxed cone step map-
ping. Our algorithm accurately renders very narrow structures of
the height fields whereas the other algorithms produce artifacts.

Next we demonstrate the scalability of our algorithm by render-



Figure 8: Number of steps performed until the ray hits the height field, maximum mipmaps (left), linear + binary search (middle), relaxed

cone stepping (right). The resolution of the height field is 10242.

ing a highly complex height field in the venus scene. The highest

resolution height field (40962) can still be rendered at interactive
frame rates while the algorithm based on uniform search achieves
only ≈ 4 fps. It was not possible to produce equivalent results for
the relaxed CSM algorithm due to the large pre-computation times.
Please note that the height field is rendered twice to support reflec-
tion in the pool of water below the statue.
To demonstrate the feasibility of large scale dynamic height field

rendering we blur the height field of the statue in real time using a
gaussian filter kernel. This gives an effect of the statue melting into
the background brick wall. Note that this is not possible with other
accurate state-of-the-art algorithms.
Throughout the video, the maximum mipmap algorithm is ex-

ecuted with Level of Detail rendering and bilinear patch intersec-
tions. The bilinear patch intersections have been computed using
the iterative search method proposed in Sect. 3.4. The video has
been rendered at a constant frame rate of 25 frames per second, the
timings given in the video are taken from a corresponding render-
ing session at a resolution of 800×600 pixels. The final video has
been scaled down to 640×480 pixels.

6 Conclusions

We have presented a fast and accurate height field intersection tech-
nique based on a hierarchical data structure, the maximummipmap.
The algorithm scales well to large scale height fields and shows
favorable performance for medium to large scale maps compared
against approximate intersection techniques. In comparison to
other algorithms based on pre-computed data structures the max-
imum mipmap is very fast to update, requiring only one mipmap
update. This enables the use of our algorithm for real-time dynamic
height field rendering. The ability to use Level of Detail rendering
is inherent in our algorithm and contributes to the performance ob-
served for large scale height fields. We therefore think that our
algorithm presents a valuable contribution for real-time algorithms
that rely on efficient and accurate ray-height field intersections.
For future work we would like to consider provably correct Level

of Detail selection techniques. Additional work includes the ef-
ficient use of Level of Detail techniques for efficient height field
shadow mapping and its application in the tangent space of ob-
jects. Another possibility is the investigation of hierarchical height
field rendering techniques in shell space [Porumbescu et al. 2005;
Jeschke et al. 2007] and the use of different hierarchy representa-
tions such as barycentric hierarchies [Smits et al. 2000].
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Figure 9: Rendering quality of different algorithms, renderings per-
formed at the same frame rate. Maximum mipmaps (top), linear +
binary search (center), relaxed cone stepping (bottom). The reso-

lution of the height field is 10242. The frame rate is 27 FPS (for
maximum mipmaps and linear binary search). The sharp spikes are
produced by antialiased font rendering into the height field. Note
that relaxed CSM and linear + binary search can miss thin struc-
tures, whereas maximum mipmaps render thin structures correctly.


